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Abstract-Cross-section restoration transforms deformed stratigraphic boundaries (the cross-section) into a less 
deformed state at an earlier time in the structural history. It is best described by transformation equations which 
incorporate rigid translation and rotation plus deformation. These equations can be linear (affine) or non-linear. 
Strain is a function of the transformation constants, and linear transformation equations produce homogeneous 
strain. Most existing restorations use linear transformations, and many assume simple shear strain, a special case of 
linear transformation. 

Linear transformations (such as simple shear) cannot, in general, preserve both area and continuity in cross- 
section restoration: i.e. if area is constrained, there will be gaps and overlaps between different regions of the 
restored cross-section. If gaps and overlaps are eliminated, area cannot be constrained. 

Cross-section restoration can be achieved by solving a geometric boundary value problem using quadrilateral 
domains with non-linear transformations. The geometric boundary conditions are specified by knowlege of the 
position of an undeformed layer boundary and the pin line. Strain measured in the field can be incorporated as an 
initial condition. 

Discontinuities (faults) can be incorporated into the solution by treating them as an internal boundary without 
gaps or overlaps. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Cross-section restoration and balancing has its roots in 
an old method of calculating depth to detachment and 
shortening (Chamberlain, 1910; Bucher, 1933; Gouge], 
1962) which was modified and adapted by Dahlstrom 
(1969), Mitra and Namson (1989) and others to indivi- 
dual layers in a cross-section. Since then, balanced cross- 
sections have become widely accepted (Cooper, 1983; 
Gibbs, 1983; Williams, 1984; Williams and Brooks, 1985; 
Cooper and Trayner, 1986; Erslev, 1986; Freeth and 
Ladipo, 1986; Julivert and Arboleya, 1986; De Paor, 
1987; Ford, 1987; Cook, 1988; De Paor and Bradley, 
1988; Rowan and Kligfield, 1989; Colletta et al., 1990; 
Mugnier and Rosetti, 1990; Protzman and Mitra, 1990; 
Searle et al., 1990; McDougall and Hussain, 1991; 
Nunns, 1991; Sage et al., 1991). 

Because of the importance of accurate cross-sections 
and paleostructure to hydrocarbon exploration, a 
number of computer programs have been developed 
which use various methods to restore cross-sections 
(GEOSEC, Kligfield et al., 1986; LOCACE, Moretti 
and Larrkre, 1989; Triboulet, 199 1; BSP, Midland Valley 
Exploration, Glasgow, U.K.; RESTORE, Texas Bureau 
of Economic Geology, Austin, Texas, U.S.A.; and 
proprietary software by petroleum companies). 

Much of the interest in cross-section restoration comes 
from the geometric constraints this process places on 
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geological interpretations. However, an equally impor- 
tant result is the paleostructure shown by the restoration. 
Paleostructure and its evolution through time relative to 
hydrocarbon migration can be critical to oil and gas 
exploration. 

Restoration begins with the present deformed state 
and generates an earlier undeformed (or less deformed) 
state. Geometric forward modeling (Suppe, 1983; End- 
ignaux and Mugnier, 1990) is the inverse of restoration: it 
begins with the undeformed state and generates a 
deformed configuration. Both of these techniques use 
geometric rules to make their transformations, and 
neglect any effects due to rheology and forces. Conse- 
quently, a geometric restoration or forward model may 
be formally admissible (Elliott, 1983) but physically 
impossible. 

In the 197Os, concepts of strain and strain measure- 
ments in natural structures were applied to the restora- 
tion of structural profiles. Oertel (1974) used 
measurements of strain in a small, single-layered fold to 
restore it to its original configuration, and Oertel and 
Ernst (1978) adapted the technique to a multilayered fold 
by dividing it into domains of homogeneous strain. 
Schwerdtner (1977) analyzed the restoration of folds 
using quadrilateral domains and pointed out the problem 
of strain incompatibility between domains, and the fact 
that rigid rotation and translation are usually unknown. 
Hossack (1978) used integration along strain trajectories 
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to restore layers to their original thickness, and Cobbold 
(1979) introduced a method using ‘finite elements’ 
(similar to Schwerdtner’s domains and not to be confused 
with the numerical method of solving dynamic equa- 
tions) and strain trajectories to restore deformed struc- 
tures. Cobbold and Percevault (1983) showed that the 
‘finite element’ method can be treated as an Euler 
integration of displacement gradients but, for the general 
case, strain incompatibilities between elements would 
always exist. They devised a least-squares method to 
minimize these incompatibilities. Woodward et al. (1986) 
combined the ‘finite element’ and strain integration 
methods with the older cross-section balancing techni- 
ques so that deformation with ductile flow could be 
included in balanced cross-sections. 

By the end of the 1980s strain data could be used to 
approximately restore structures using finite elements or 
domains. Strain was assumed to be homogeneous within 
each domain, there were little or no data on rigid-body 
rotations, and gaps, overlaps and strain incompatibilities 

between adjacent domains remained a significant pro- 
blem. De Paor (1990) devised a special non-linear 
transformation matrix which kept the edges of quad- 
rilateral domains straight and eliminated gaps and over- 
laps. However, the elimination of these incompatibilities 
resulted in an unspecified area strain. 

Howard (1993) pointed out that strain data could be 
converted into transformation (or displacement) func- 
tions at the strain data points. These displacement 
functions could then be interpolated graphically between 
data points giving non-linear functions which could be 
used to restore a layer without generating gaps, overlaps 
or strain incompatibilities between domains. 

Another interesting approach to restoration, which is 
applicable to cross-sections in which the pathline (or 
streakline) of a material element can be inferred during 
deformation, was described by Morgan et ~2. (1994) and 
Morgan and Karig (1995). This method involves the 
solution of the Lagrangian form of the conservation of 
mass equation within deforming domains, and was 
applied to the toe of a deforming accretionary prism. 
This technique requires information on volume/density 
changes and some simplifying assumptions not normally 
available from paleostructures. 

Both restoration and geometric forward modeling are 
problems in analytical geometry which can be described 
mathematically by geometric transformations and finite 
strain. The purpose of this paper is to analyze the 
restoration process from an analytical geometry point of 
view, and to show how cross-sections with faults can be 
restored by solving a geometric boundary value problem. 

GEOMETRIC TRANSFORMATIONS 

In forward modeling, the co-ordinates of the deformed 
configuration (x) are given as a function of the 
undeformed co-ordinates (x) in a Lagrangian reference 

frame (Means, 1976; Ramsay and Huber, 1983). An 
Eulerian description is used in restoration in which the 
undeformed co-ordinates (x) are given as a function of 
the deformed position (x). This is the framework used 
here. In two dimensions, for example, the Eulerian 
transformation equations over some domain can be 
approximated by: 

xl = DIO + Dllxl + Dl2x2 + D,3x; + Dl4xlx2 + D,sX; 

x2 = D20 + D21x1 + D22x2 + D23x; + D24xIx2 + D25x;, 

(1) 

where D, are the transformation constants. These 
equations are written only to the second order, in part 
for simplicity but also because solutions to higher-order 
equations require more information than is usually 
available from cross-sections. However, it is easy to 
extend the equations to higher orders. 

The discussion in this paper is limited to two 
dimensions. While this has been the assumption in all 
cross-section restoration, it limits the application to plane 
strain. Plane strain is rare in nature, so cross-section 

restoration should always be considered an approxima- 
tion whose reliability depends on the degree to which 
plane-strain deformation has occurred. An extension of 
this approach to three dimensions is currently being 
developed. 

The Eulerian deformation gradients (Means, 1976) 
are: 

a&/ax1 = Dll + 2Dl3xl + D14X2 

aXl/axz = 012 + D14x1 + 2D15x2 

a&/aXl = D21 f 2023X1 + D24X2 
(2) 

aX2pX2 = 022 f D24XI i- 2025X2 

and the Cauchy strain tensor (using tensor notation) is 

Cq = axk/aXi a&/aXj (3) 

and 

CII =(Dd2 + (D2d2 +~(DIIDI~ + D21D23)x1+ 

TDIIDI~ +023024)x2 + 4(D,312 + (D2312x:+ 

4tD13D14 + D23D24Ix1x2 + (D,412 + (D24j2x; 

(4) 

Note that the deformation gradients (equation (2) and 
strain (equation (3) are functions of position within the 
domain because the transformation equations are non- 
linear. If they were linear (affine) the gradients and the 
strain would be constant (homogeneous) over the domain. 

TRANSFORMATION EQUATIONS IN CROSS- 
SECTION RESTORATION 

The geometric boundary value process of reconstruct- 
ing cross-sections consists of dividing the cross-section 
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Fig. 1. Restoration of roll-over using quadrilateral domains. (a) The initial configuration with the top boundary as the 
reference surface and the right edge as the pin line. The black dots mark the known co-ordinates of the corner of domain I, (b) 
The restored cross-section with the reference boundary horizontal. The three black dots represent known co-ordinates in the 
restored cross-section because they are on the reference boundary and the pin line. This produces six equations (x, y for each 
dot) relating the restored co-ordinate to the initial co-ordinate. These six equations must be used to find the transformation 

constants to calculate the location of the unknown corner of the quadrilateral (white dot). 

into domains (Fig. la), and then restoring each domain 
successively by translation, rotation and strain so that 
they all fit together in an undeformed configuration (Fig. 
lb). Quadrilateral domains seem to be the most efficient 
for this purpose. 

The restoration of each domain is described by an 
Eulerian transformation equation. For example, domain 
1 (Fig. 1 a) is bounded by the reference surface and the pin 

line. The pin line and reference surface are presumed to 
be known in the undeformed state (Fig. lb), and the co- 
ordinates of these two surfaces become the boundary 
conditions of the geometric problem. For example, in the 
deformed state the co-ordinates of all four corners of 
domain 1 (Fig. la) are known, and in the undeformed 
state three corners are known, the ones along the 
reference surface and pin line (Fig. 1 b). 
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To restore domain 1 and determine the co-ordinates of 

its fourth corner in the undeformed state, it is necessary 
to solve for transformation constants in equations similar 
to equation (I). Once those constants are known, the 
undeformed position of the fourth corner (as well as all 
other points within the domain) can be calculated. 

It is possible to set up a number of equations involving 
the transformation constants in order to find solutions 
for the constants. (Because the number of transformation 
constants must equal the number of equations, the form 
of the transformation equations is limited.) In two 
dimensions, there are six equations for the three corners 
on the external boundary of quadrilateral domain 1 (Fig. 

1). 
Presumably, linear transformation equations could be 

used because they have only six constants: 

XI = DIO + DIIXI + D12x2 

X2 = D20 + D21x1 + D22x2. 
(5) 

However, if area is constrained, at least one additional 
equation must be added, so the six constants of equation 
(5) are not enough. This is an example of the general- 
ization that affine (linear) transformations cannot con- 
strain area of restored domains without creating gaps and 
overlaps between adjacent domains. If six linear equa- 
tions are constructed that do constrain area (by reducing 
the number of corners used), then adjacent domains will 
have gaps or overlaps in the restored section. Layer- 
parallel simple shear is a special case where both area and 
continuity can be preserved, but only if the upper and 
lower boundaries of the layer are parallel. 

The only transformation that can both constrain area 
and preserve continuity is non-linear. One possible 
equation for quadrilateral domains is: 

XI = DIO + DI 1x1 + D12x2 + Dnf(xi, xi) 

X2 = D20 + D21x1 + D22x2 + D23g(xi, .q), 
(6) 

where,f(x, _ui) and g(x;, xi) are some convenient functions 
of the unrestored co-ordinates. 

In general, when transformations of the type described 
by equation (6) are applied to quadrilateral domains, the 
four straight lines 

b,l(x;, xi> = U,,XI + bmx2 + cm = 0 (m = 1,2,3,4) (7) 

forming the edges of the initial quadrilateral domain will 
transform into a curvilinear quadrilateral in the restored 
configuration. In a restored cross-section consisting of a 
large number of quadrilaterals, the curved edges of 
adjacent quadrilaterals may not coincide resulting in 
gaps or overlaps. However,f(xi, xi) and g(x, xi) (equation 
(6) may be chosen so that the boundaries of quadrilat- 
erals remain straight lines after transformation. For 
example, De Paor (1990) chose a non-linear transforma- 
tion in which lines parallel to the co-ordinate system 
remain linear after the transformation so that variables in 
equation (6) are: 

.f‘(Xj, Xi) = g(x;, Xj) = XIX2 

013 = DII~XI + D128x2 (8) 

023 = D218x1 + D226x2 

where 6xj are constants (De Paor, 1990). 

Alternatively,f(x,, x,) and g(xi, xi) in equation (6) can 
be chosen such that the evaluations .Xlm) =g(/,?,) = 0. In 
that case, adjacent domains in the restored cross-section 
have compatible, non-overlapping boundaries. This 
choice is always possible from the class of all non-linear 
functions of the plane variables x and y. For example, the 
non-linear function, 

defined for points in the interior and on the boundary of 
any quadrilateral domain of the unrestored section, 
obtains values h(l,) = 0 on all sides of the quadrilateral. 
Using h(xj, -xi) (equation (9) for bothj(x;, xi) and g(x;, x,) 
in equation (6), these non-linear functionsf(x,, ,yi> and 
g(xi, xi> take on linear function forms on the boundaries 
I,, of a quadrilateral domain in the unrestored configura- 
tion. Numerical constants a,, b, and c,, (equation (7) are 

prescribed SO that h(xi, .x;) =,f(xi, xi) =g(x;, ,~j) are 
continuous on the boundaries of the quadrilateral. The 
transformation equation to be solved is: 

where Im(xi, xi) is from equation (7) 
This functional form has eight transformation con- 

stants, and quadrilateral domains with straight edges in 
the unrestored configuration are transformed into non- 
overlapping quadrilaterals with straight edges in the 
restored configuration. However, information from the 
three known corners of the quadrilateral domain only 
provides six equations, so two additional equations are 
required to solve for all eight constants. 

It is essential to constrain the area of each quadrilateral 
domain in some sense. A deformation is said to be 
isochoric if the Jacobian (D) = 1. This pointwise isochoric 
condition will assure the preservation of area during 
transformation of quadrilateral domains. However, this 
is difficult to impose in practice. One way to add two 
additional area constraints to find all eight constants is to 
divide the quadrilateral domain into two triangles and to 
constrain the area of each triangle. For a constant area 
transformation 

QI(X,, xi) = ciAi(Xi, xi) and 02(.x,, xl) = <2A2(X;, x,), 

(11) 

where al and n2 are areas of the two triangles in the 
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unrestored domain, A, and A2 are the areas of the same 
triangles in the restored domain, and it and c2 represent 
the area change during the restoration. Both of these area 
constraints can be written in terms of the transformation 
constants. The six equations derived from the three 
quadrilateral corners and the two area constraints are 
eight equations which can be solved for the eight 
unknown transformation constants in equation (10). 

USE OF NATURAL STRAIN DATA IN 
RESTORATION 

Measurements of strain along the cross-section may be 
available (Woodward et al., 1986) and can be included in 
the cross-section restoration boundary value problem. 
Strain data are commonly given in terms of the 
magnitude and orientation of the principal directions, 
and we will use quadratic elongation (2) and orientation 
(8’) measured in the Eulerian reference frame. Unfortu- 
nately, the rigid rotation component (0) can seldom be 
estimated, so it will not be used as a constraint in the 
boundary value problem. 

Strain is defined at a material point and is a function of 
the deformation gradients (or displacement gradients) 
evaluated at that point. Ramsay and Huber (1983, 
appendix C) have derived the Lagrangian equations 
relating deformation gradients to strain and rotation. 
The eqivalent Eulerian relationships are: 

&Yi/&ui =cos w(ki sin’ 13’ + 12 cos2 #)/hill, 

+ sin w sin 8’ cos 8’(h2 - hi)/kik2 

ax2/adyl =cos w sin 8’ cos 8’(h2 - hi)/hih2 

+ sin w(h2 sin2 0’ + hi cos’ e’)/kik.2 

ax,/ax;, =cos w sin 0’ cos O’(hz - hl)/k,h2 
(12) 

- sin w(hi sin’ @’ + A2 cos’ e’)/hihz 

ax2/a.u2 =cos~(h~ sin2 e'+kl cos2t3')/A.,A2 
- sin w sin 8’ cos @‘(A* - ki)/hih2 

Eliminating o (by subtracting the 3rd from the 2nd, 
and adding the 1st and 4th of equation (12) leaves two 
independent equations relating the strain parameters to 
the deformation gradients: 

0 = - (hi (30s~ 8’ + A2 sin’ e')ax, /ax, + sin 0’ cos 8’ 

(h2 - h,)ax2/aX, -sing cos e'(h2 -h,)ax,jax2 

+@I sin’ 8’+h2 COG e'px2/ax2 

0 =sin 8’ cos 8’(h2 - hl Iax, /axI - (h, sin2 8’ 

+h2 cos’ e')ax2/ax, -(A, cos2 0'+h2 sin2 0’) 

axl/a.u2 + sinO’cos@‘(h2 - Al )ax2/ax2. 

(13) 

However, the deformation gradients in equations (12) 
and (13) are functions of the transformation constants in 
equation (6): 

axliaxl = aI + D13af(xi, -q/h 

ax2/aXI = ~~~ + Dz3ag(xi, dkg/a_x, 

axiiax2 = Di2 + h~fh -qik 
aXdam = 022 + D23ag(xi, +)/ax2 

(14) 

Substituting equation (14) into equation (13) provides 
two independent equations relating strain parameters to 
the transformation constants of non-linear transforma- 
tion equations: 

0 = - (hi cos’ 8’ + h2 sin’ @‘)D I I - sin 8’ cos 8’ 

(h2 - hi)Di2 - ((hi cos2 8’ + h2 sin* 0’) 

af(x;, +)/ax1 + sin e’ COSQ’(A~ - k,)af(xi, x,)/ax2) 

013 + sin 19’ cos @‘(A2 - ht)Dzt + (ht sin’ 0’ + h2 

cos2 0’)022 + ((At sin2 0’ + k2 cos2 8’)ag(x;, xj)/a_x2 

+ sin 8’ COS B1(k2 - kl)ag(xj, xj)/ax, )D23 

(154 

0 =sin 8’ cos B’(h2 - hl)D~, - (A.1 cos’ 8’ + A2 sin’ Q’)D,, 

- ((Al cos2 8’ + h2 sin2 tl’)?f(x;, x,)/ax2 - sin 8’ 

cos Q’(h2 - ki)af(xi, xj)/axl)Dl3 - (Al sin’ 8’ + h2 

cos2 Q’)D2i + sin 0’ cos Q’(h2 - ho022 + {sin 8’ cos 8’ 

(h2 - hI)ag(xi, x,)/ax2 - (hi sin2 e'+ h2 cos.2 e') 

a&i7 xj)/axl)D23. 

(15b) 

Equations (15a) and (15b) apply to a material point at 
which the strain has been measured. So in principle, there 
would be a set of two equations available for each point 
in the domain where the strain parameters had been 
measured. 

The non-linear transformation equations (equation 
(10) have eight transformation constants to be deter- 
mined in a quadrilateral domain. Six of those equations 
come from three known corners of the domain, and the 
other two can be obtained from area constraints. If strain 
data are available, then two more equations (equations 
(15a) and (15b)) for each strain data point within the 
domain can be obtained, so the problem becomes over- 
constrained. If strain data are available, there is an easy 
way to add more transformation constants to equation 
(10). The function 

l? ltw(xi7 xj) (16) 
WEI 

in equation (10) has 15 terms with only one transforma- 
tion constant. So it would be possible to add up to 12 
additional transformation constants to accommodate up 
to six strain data points within a domain. 
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CONSTRAINTS ACROSS FAULTS 

It is possible to reconstruct the first fault block, domain 
by domain, to its undeformed configuration knowing the 
undeformed co-ordinates of the points along the top 
layer (flat or a known topography) and a pin line (Fig. 1). 
The next fault block must fit against the undeformed 
fault of the first block, and the fault becomes the ‘pin’ line 
for the second fault block (Fig. lb). Again, the 
undeformed co-ordinates of the top of the second fault 
block are assumed known. If there is a thickness change 
across this fault, the stratigraphic boundaries of one fault 
block will not match equivalent boundaries in the 
adjacent fault block in the undeformed configuration. 
In other words, the fault could be a discontinuity in both 
the deformed and undeformed state. 

Constraints on deformation at fault boundaries can be 
derived from the geometric consequences of smoothness, 
and non-linear analysis is essential to establish required 
boundary conditions at faults. The relationships we have 
derived (Appendix I) are based on two geometric 
necessities: (1) there can be no gaps or overlaps between 
adjacent fault blocks; and (2) the deformation on one side 
of the fault is related to the deformation on the other side 
of the fault, the fault curvatures in the deformed and 
undeformed state, and the amount of displacement along 
the fault (see equation (A20) of Appendix I). 

In the restoration procedure outlined in Appendix I, 
the curvature of both the deformed and undeformed 
fault, the strain distribution on one side of the fault, and 
fault slip can all be calculated or estimated. From this 
information, strains and displacements on the other side 
of the fault can be calculated to get the undeformed 
configuration of the adjacent fault block. 

Employing the two-dimensional, plane-strain assump- 
tion used here, slip on faults must be confined to the plane 
of the cross-section to make the restoration. A fully three- 
dimensional treatment of restoration (under develop- 
ment) is necessary to adequately account for oblique or 
strike-slip movement along faults. 

BOUNDARY CONDITIONS AND LINEAR 
MODELS 

Any restoration method must make some assump- 
tions about the undeformed configuration (boundary 
conditions) and the transformation model. Most 
assume that the uppermost layer was initially horizon- 
tal, and that one edge (the pin line) has the same 
orientation in the undeformed as it has in the deformed 
configuration. 

The restoration is very sensitive to the choice of 
boundary conditions (see Geiser et al., 1988 for a 
discussion of the effect of pin lines). If the boundary 
conditions are not geologically accurate, the restoration 
will not be reliable no matter how good the cross-section 
looks. 

The constraint of working in two dimensions (plane 
strain) is also problematic. In nature, fault displacements 
seldom occur in the plane of the cross-section, and there 
is commonly a component of strain perpendicular to the 
cross-section. If these violations of plane strain are 
significant, then two-dimensional restoration is not 
reliable. 

In addition to the pin line, the topography or 
bathymetry of the top boundary must also be specified 
in the restored section. Most assume that this layer was 
flat and horizontal because its initial shape usually 
cannot be known with certainty. However, the shape of 
the top boundary can affect the restored section as 
dramatically as the pin line, and errors in the shape of 
the top boundary will produce errors in the reconstruc- 
tion. 

Most restoration and balancing methods assume a 
linear transformation model. For example, layer-parallel 
simple shear assumes that layer boundary length in the 
restored section is the same as it is in the unrestored 
section and that there are no tectonically induced 
thickness changes either. Simple shear inclined to 
layering always introduces changes in layer length and 
thickness which depend on the inclination. Conse- 
quently, the configuration of the restored section is also 
dependent on the linear transformation chosen. A linear 
transformation is so restrictive that it cannot even 
preserve continuity between adjacent domains, so it will 
distort the restored section unless the natural deforma- 
tion followed the same linear transformation, which is 
very unlikely. Non-linear transformations are the only 
ones that can portray the complexity of natural deforma- 
tion, yet also be capable of duplicating the simpler linear 
transformations. 

EXAMPLES OF CROSS-SECTION 
RESTORATIONS 

A UNIX-based computer program has been written 
using much of the non-linear approach outlined here. 
Figure 2 is an example of a cross-section that has been 
restored using non-linear transformations and quadrilat- 
eral domains. The major advantages of this approach are 
as follows. 

(1) Control of both area and continuity is assured for 
inhomogeneous geological deformation (which is the rule 
rather than the exception). 

(2) Dividing each layer of the cross-section into 
quadrilateral domains means that the restoration can be 
done layer by layer within a fault block rather than being 
forced to restore the whole fault block at once. Thickness 
variations within each layer can be properly restored 
(Fig. 2). In addition, both synthetic and antithetic faults 
can be restored which is a serious problem for some 
programs using simple shear with faults as pin lines. 

(3) The finite strain, rigid rotation and translation can 
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a 

b 

Fig. 2. (a) A cross-section from an interpreted seismic line from the North Sea. (b) A restoration on top of the second layer 
based on a non-linear transformation of quadrilateral domains. The right-hand side of the cross-section is a pin line. Note that 
intersecting faults can be restored. The gap in the lowest layer suggests that the interpretation may be erroneous or that 

movement of material out of the plane of the cross-section has occurred. 

be calculated within each domain. This represents the 
strain required to transform the cross-section from its 
deformed to undeformed configuration. The reciprocal 
of that strain represents the deformation that has 
accumulated in the deformed cross-section, and can be 
used as a further constraint on the reliability of the cross- 
section. If the local strain in a domain is extremely 
different from that observed in the rocks, there is 
something wrong with the cross-section, its assumed 
boundary constraints or the transformation model. 

(4) Finally, because total strain can be calculated, 
quantitative constraints can be imposed to link the 
undeformed geometry across faults. 

Figure 3(a) is an extensional structure from off-shore 
Nigeria, Fig. 3(b) is a restoration using affine transforma- 
tions and Fig. 3(c) a restoration using non-linear 
transformations. 

In Fig. 3(b) gaps and overlaps between adjacent fault 
blocks are minimized by using a combination of rigid 
rotation, translation and simple shear. Note that the fault 
on the left-hand side of Fig. 3(a) is artificial: there is no 
displacement on it and it merely serves to divide the cross- 
section into blocks that can have different geometric 
transformations. The solid black and white areas in Fig. 

3(b) are overlaps and gaps, respectively, between fault 
blocks which exist because an affine transformation 
(simple shear) was used. If the gaps and overlaps are 
minimized, then the artificial fault on the left-hand side of 
the restored section (Fig. 3b) now has offset which is an 
artifact of the transformation algorithm. In the same 
way, the offset on the other fault is probably in error 
because of the limitations of affine transformations. 
These errors may not be too significant if the user is 
only interested in balancing: making a geometric check 
on the interpretation. However, if one is interested in 
relating paleostructure to generation and migration of 
hydrocarbons, paleo-offset on faults can be critical. 

Figure 3(c) is a non-linear restoration. Note that the 
artificial fault has no displacement in the restored section, 
there are no gaps or overlaps, the offset on the ‘real’ fault 
is quite different compared to Fig. 3(b), and the loose line 
on the left-hand side of the restoration correctly shows 
that the lower layers have less line length than the upper 
ones in this growth fault environment. 

Figure 4(a) is a compressional structure from Peru 
based on outcrop and seismic data. There are significant 
thickness changes in the upper two units, especially in the 
anticline. 

Figure 4(b) is a linear restoration based on layer- 
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Fig. 3. (a) A cross-section interpreted from a seismic line off-shore Nigeria depicting a listric normal fault with growth and 
roll-over on the hanging wail. Note the fault on the left is purely artificial: it has no displacement and serves only to divide the 
cross-section into three regions. (b) Cross-section in (a) restored using inclined simple shear, rigid rotation and translation in 
the three regions separated by faults. The simple-shear angle and rotation and translation were adjusted to qualitatively 
minimize gaps and overlaps between the three regions. Gaps and overlaps are represented by white and black areas, 
respectively. Note the left fault has offset in the restored section which is an artifact of the linear simple-shear transformation 
used in the restoration. (c) Cross-section in (a) restored using non-linear transformation equations. Note the left fault can be 
restored without offset; the loose line on the left-hand side of the restored section accurately shows less line length in the lower 

strata. 

parallel simple shear. Each layer in the cross-section (Fig. 
4a) was divided into quadrilateral domains which were 
then successively restored from left to right. Because the 
affine transformation is over-constrained, the domains 
cannot be fitted together, and gaps (blank areas) and 
overlaps (black areas) are especially prominent where 
thickness changes occur. In addition, the same boundary 
between two layers may have different lengths (see the 
loose-line on the right-hand side of Fig. 4b). This also 
produces gaps and overlarjs along the fault on the right 
side of the restoration (Fig. 4b). 

In Fig. 4(c)-(e) all restorations use a non-linear 
transformation and a quadrilateral mesh. Because each 
quadrilateral has a thickness associated with it, the user 
can control the thickness in the undeformed restoration 
and generate a variety of paleostructures depending on 
the assumptions. In Fig. 4(c) it is assumed that the 
variable thickness in the cross-section (Fig. 4a) is due to 
tectonic strain and not due to original depositional 
thickness. The thickness in the restored section (Fig. 4c) 
is constant in each layer in each fault block. 

Alternatively, in Fig. 4(d), it is assumed that the initial 
thickness varied linearly in each fault block. Note that the 
paleostructure in Fig. 4(d) is quite different compared to 
Fig. 4(c). In Fig. 4(d) there is almost no displacement on 
the left fault which is near the crest of a gentle anticline. 
The right-hand side fault is a paleogrowth fault which has 
been inverted to generate the modern structure (Fig. 4a) 

Figure 4(e) assumes that the modern thickness was also 
the initial thickness. This implies that the anticline in Fig. 
4(a) is an inverted basin and the left-hand side fault was a 
reverse fault which was active during sedimentation. 

These three possible paleostructures have very differ- 
ent tectonic implications and could have important 
economic differences when the timing of hydrocarbon 
generation and migration is considered. The choice is an 
informed judgment of the geologist. For example, Fig. 
4(e) (ancient and modern thickness are the same) is least 
likely. It does not ‘balance’ well, and the conversion of a 
syncline into an anticline by layer-parallel compression is 
mechanically unlikely. Unless regional stratigraphic and 
tectonic data preclude it, Fig. 4(d) seems most likely. 
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Fig. 4. (a) A cross-section interpreted from a seismic line from Peru. Note thickness changes in upper strata. (b) The cross- 
section of (a) restored using layer-parallel simple shear. The gaps and overlaps are shown by white and black areas, 
respectively, and are the result of using layer-parallel simple shear where there are thickness changes. Note also that line 
lengths on the same layer boundary differ depending on whether measured as the bottom ofthe overlying layer or the top of the 
underlying layer (see the loose-line on the right-hand side of the restored section). (c) A restored section using quadrilateral 
domains and non-linear transformations. It was assumed that initial layer thicknesses were constant in each fault block. This 
restoration suggests that the right fault was a reverse growth fault while the left fault was normal. (d) A restored section using 
quadrilateral domains and non-linear transformations. It was assumed that initial layer thickness varied linearly in each fault 
block. This restoration suggests that the right-hand side fault was a normal growth fault, and the left-hand side fault was not 
active but was the site of a paleo-anticline. (e) A restored section using quadrilateral domains and non-linear transformations. 
It was assumed that initial layer thickness was the same as presently occurs in the modern structure (a). This produces a paleo- 

syncline at the site of the modern anticline. The left fault is now reverse, while the right fault has almost no displacement. 
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CONCLUSIONS 

(1) Affine transformations such as simple shear, pure 
shear, rigid rotation and translation, or any combination 
of these special cases, cannot preserve both area and 
continuity of adjacent regions and, in general, should not 
be used to restore cross-sections and infer paleostructure. 

(2) Continuity and area can be preserved using non- 
linear transformations and quadrilateral domains. 
Dividing the cross-section into quadrilateral domains 
also provides control of thickness changes and gives more 
flexibility and detail to the restoration. 

(3) If non-linear analytical equations are used to 
transform quadrilaterals from the deformed to the 
undeformed state, the finite-strain distribution can be 
calculated at any point in the cross-section. 

(4) If finite strain can be measured in the rocks, these 
data can be included in the restoration process to provide 
an important additional constraint on the reliability of 
the restoration. 
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APPENDIX I 

Constraints across,faults 

Constraints on deformation at fault boundaries can be derived from 
geometrical consequences of continuity, and non-linear analysis is 
essential to establish required boundary conditions at faults. In the 
deformed configuration (the cross-section), let: xi = Z&(S) represent the 
fault curve 1. with arc length s along the curve 1. In the deformed 
configuration, we can regard the curve as separating two material 
regions r- and r +. Motions Xi- (x,-) and Xi’ (xj’) transform particles 
in regions r- and r ’ in the deformed state to regions R- and R+ in the 
undeformed state whose common boundary is the undeformed fault 
curve A. In order to establish the position of a fault in the undeformed 
configuration, the curve A : X, = X,y[.?,(s)] is determined by extrapola- 
tion with the cross-section restoration algorithm in the region r- in the 
limit as particles in r- approach the fault curve 1. We suppose the 
motion sufficiently smooth to compute 

dX,: = (gX;/&+ds, (Al) 

where I, = d.?//ds is the unit tangent vector to the curve 1. 
An element of arc length S- on the undeformed fault can be 

computed from 

(dS-)* = dX;dX,- = c,l;l,(ds)*, (A2) 

where cil - is the right Cauchy-Green strain tensor. Because the 
Cauchy-Green tensor is always positive definite, 

dS-/ds > 0. (A3) 

and the arc length function S- = S-(s) is invertable so as to allow the 
construction of the inverse function s = s-(S). Thus there is a one-to- 
one correspondence of points on the fault curves I and A. 

Particles in the regions r- and rt adjacent to the point s on the 
deformed fault curve 1 will not generally remain adjacent to a point Son 
the undeformed curve A. The motions X,- (xi-) and X,+(x,‘) produce 
finite deformations that can induce large motions along a fault. It 
follows that particles X,F[.?,(S)] and X,f[.?,(s)] on the undeformed fault A 
can be separated by a large distance. 

In order to analyze continuity conditions required along the 
undeformed fault curve A, we introduce the fault motion function 
s,(s). The fault motion function provides a correspondence on the curve 
i, for points mapped from the regions r- and r ’ with the motions Xi- 
(xj-) and X,+(x/), respectively, at the common boundary 1 for points 
on the curve A, the common boundary of regions R- and R’ in the 
undeformed configuration. Analogous to equations (Al) and (A2) 
above, we suppose the motion X,+(x,‘) sufficiently smooth to 
compute 

and 

dX; = aX,+lax,+l,ds (A4) 

(dS+)2 = dX:dX,? = c;ljl,(ds)2. (AS) 

Equation (A5) provides a means to calculate arc length St on A from 
the motion X,‘(x,+)and the representation i,(s) for the fault curve E. in 
the deformed configuration. The fault motion function is defined by 

S_(s) = s = s+[sr(s)]. (A6) 

In words, the fault motion function maps points of the line i onto 
itself such that preferred particles on opposite sides of the fault i will 
transform to the same point Son the undeformed fault curve A from the 
motion Xi- and X,‘. The common measure of arc length on the 
undeformed fault A is denoted by S. For material continuity. dsr/ds > 0, 
and the fault displacement can be defined by uds) = s,(s) - s. 

With the fault motion function, we can state our assumption about 
continuity along the undeformed fault curve A. The continuity 
conditions are: 

X;[x,(s)] = X,f[x,(sr)] on A. (A7) 

This condition assures that the motions Xi- and X,’ deliver particles 
on the fault with no opening or overlap. This condition may be written 

x, = (x; - X,‘)” = 0. (A@ 

Discontinuities of X, are spread out smoothly over A so that, in 
particular, 

dXi/dS = 0 on A. (A9) 

The smoothness requirements stated in equations (A8) and (A9) 
provide restrictions on the motions X,- and Xi’ along the fault A. 

Unit tangent vectors Li- and L,+ at a point S of L derived from the 
motion Xi- and X,‘, respectively, must be equal, that is with 

L; = dX,:(s)/dS = .Z+X;/axiIk(s)(ds/dS) (AlO) 

and 

L+ = aX;(sr)/ax:Ik(sf) dsf/ds ds/dS. (All) 

Then geometrical compatibility (Lip = Lit on A) requires 

ax;(s)/aq ik(s) = ax:(sf)/a$ik(sf) dsf/ds. (Al2) 

The relationship provided in equation (A12) together with the 
identity 

&k = Ii(s + n,(sfMsf), (A13) 

where 6,k is the 2 x 2 unit matrix and n,{sf) is a unit normal vector to the 
deformed fault i, at the point sr, allow the representation 

ax;c(s,)/ax,+ =[aX,+(sr)/ax~n&r)]nj(sr) 

+ [aX,:/ax,I,(~)]l~(sr)/(d.rr/ds). 
(Al4) 
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Equation (Al4) gives a representation of the unknown deformatton 
gradient D,, ’ on i. in terms of known tangential components of D- and 
unknown normal components of the deformation gradients Df. Our 
smoothness assumptions allow further differentiation of equations 
(AIO) and (Al I) along the fault curve A. Let N,(S) denote the unit 
normal vector to the curve A. Application of the Frenet formula 

dL,/dS = K,, N,, (A15) 

where K,, is the curvature of the fault A, and computation of the 
derivatives dL, /dS and dL, ’ /ds provides the formulae 

K, N; =a*X,-(s)/ax;ax; I,(s)l&)(d~/dS)~ 

+ ax,-(.F)/a.u;n,(S)KA(s)(ds/dS)* 

+ ax,-(s)/ax,[,(s)(d’s/dS*) 

(‘416) 

K,+N,? =a’X,+(s,)/a.u;a.u: l,(sr)l&r)(dsr/ds)*(ds/dS)* 

+ ax:(s,)/ax:n,(sr)K*(Sr)(dsr/ds)‘(ds/dS)’ 

+ ax~(.~r)ial:l,(.~r)9(S), 

where 

(Al7) 

q(S) = d*s,/ds’(ds/dS)* + (dsr/ds)(d’.y/dS’) 

and K,_ IS the curvature of the deformed fault curve i.. 

(Al@ 

Geometric compatibility requires that K,e- =K,,+ and 
N,-(S) = N; ’ (S). All of the compatibility relationships of equations 
(AIO), (Al I), (A16) and (A17) can be used to constrain the state of 
deformation in the region R+ along the undeformed fault A when 
representations for the motions X,- and X,’ in the neighborhood of a 
fault are supplied. 

In the case that either (a) the deformations D- and D’ are 
homogeneous (linear) or (b) the vectors v,~ = $X,-(s) 
/a.v-ax I (s)l&) and V: = a2x,+(+r)/a.~~ax:I,(sr)lk(Sf) appearing in 
equatiokns’(A16) and (A17) are negligibly small, we can calculate the 
state of deformation %I’,+(sr)/a.x~ in the region R+ on the fault A 
without recourse to specific forms of the motion X,- and X,’ along a 
fault. Equations (A14) and (A17) provide the estimate 

aX,+(sr)/&;n,(.sr) =[K;(dsr/ds)N:(S) 

Substitution of the result of equation (A19) into equatton (A14) 
provides the result 

aX,+(sr)/ax; =[K,,(d.vr/ds)N,(S) 

- ax,-(s)/a,r,r,(s)9(S)]n,(sr)/[Ki(.(r)(ds, /d.v)‘(ds/dS)‘] 

+ ax,-(S)/ilXi I~.(s)l,(sr)/(dsr/ds). 

(A20) 

This last formulae provides an estimate of D,, ’ in the region R ’ 
along the fault when the deformation D,-, the fault curvatures K,, and 
k;., the unit tangent and normal vectors /,, niand N, on the deformed and 
undeformed faults respectively, the fault length function S= S(s), and 
the fault motion functions Q(S) are prescribed or calculated in 
restoration computations. 

Use ofequations (A 19) and (A20) will be inappropriate when the fault 
curve L in the deformed configuration is a straight ltne (ti; ~0). When 
the motions X, and ,I’,’ are homogeneous or the vectors vi and v,’ 
vanish, then the computation of the inner products of equations (A16) 
and (Al7) with the unit tangent vector L, and unit normal vector N, of 
the undeformed fault A shows that 

(d2s/dS2) = 0; l/(S) = 0; and KA = 0. (A21) 

These results imply that: (i) the undeformed fault curve A must also be 
a straight line; (ii) the deformed and undeformed fault curves i and A 
are related by a uniform stretch s = aS+an, where CT and 0,) are 
constants; and (iii) the fault motion function .Y,(s) is the lmear function 
s,(s) = zs + /I. with a and /I constant. In this simple class of deformations, 
a fault can still be stretched. rotated and translated. In general, it is 
unreasonable to assume that a straight line fault in the deformed 
configuration cannot be transformed into a curved fault tn the 
undeformed configuration. Here again we affirm the necessity to work 
with inhomogeneous (non-linear) transformations in section restora- 
tion. 

In our practice of two-dimensional restoration. we employ the 
geometric compatibility condition, equation (Al2), in the form 

c;/,‘,]<,- = c~lil,(dsr/ds)‘l,,;. (A22) 

where s, and s, i refer to formation units in regions r- and r ’ adjacent 
to a fault. This means that thicknesses for such a unit along the faults A 
and 6 are related according to the ratio 

AS-/As- = AS+/As+. (A23 


